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Abstract

Low cost, fast access and multi-functional small satellites are being increasingly used to provide and exchange
information for a wide variety of professions. They are particularly useful, for example, as a resource in very
remote areas where they can provide useful information such as to rescue teams for changing conditions in a
disaster zone and monitoring the sea state to warn approaching shipping. Unlike terrestrial communication
systems, the receiver/transmitter in these di�erent application areas needs to be powered on and contact to
specialised satellites to exchange data at speci�c time rather than consuming valuable power at all the time.
This, therefore, requires accurate knowledge of when these satellites will pass over the horizon of the given
location over a timescale of months in some cases. On the other hand, long term orbit estimation with high
accuracy is also a key part for mission analysis and Earth observation operation planning. The same algorithm is
also needed onboard satellites for autonomous on-board data management. The principal di�culty of predicting
satellite passes over such long timescales is to take account of the e�ects of atmospheric drag.

In this paper, we present a fast algorithm for the prediction of passes of a LEO satellite over any given location
which provides high accuracy over a long period. The method exploits sophisticated analytic models of the orbit
and provides direct computation of rise-set times and nadir tracking without the need of orbit propagation for
hill climbing. This provides for a very small fast algorithm so more suitable for low-end computers and hand-held
sets. Since the atmospheric drag is the key factor that a�ects the accuracy for long-term estimation for satellite
in LEO, this model not only includes secular perturbation and periodic perturbations, on the other hand a drag
model based on the well acknowledged NASA atmosphere statistics is incorporated. Di�erent from those in other
orbit prediction methods, for example, the most widely used SGP4, the drag model here has a variable parameter
which is subject to modify as time being on according to periodical atmosphere properties changing. Simulation
result shows it can provide quite accurate estimation for long look-ahead period.

1 Introduction

Small satellites are becoming more and more exible
and powerful to enable military and civil applications
such as low cost store-and-forward communication, re-
mote facility metering, disaster warning for global ship-
ping service and some Earth Observation missions. The
replacement of traditional spacecraft in these applica-
tions is motivated by the reality of shrinking govern-
mental budgets and commercial interest in deploying
low-cost small satellites for a wide variety of profes-
sions.

In particular, there has been big trend to use low

cost, fast access and multi-functional small satellites to
provide and exchange information for a wide range of
applications, which includes communication in a very
remote area for changing conditions, disaster warning
for approaching ships in the sea and so on. Di�er-
ent from ordinary communication stations which has
su�cient power supply, the communication module in
these applications, say, a rescue team trekking in a
south American forest, has only very limited power
capacity, therefore requires the receiver/transmitter to
be powered on and contact to the spacecraft at spe-
ci�c time rather than consuming valuable power at all
the time. This, therefore, requires accurate estimation
of when the satellites will start to be visible (rise) to
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a given location on the Earth and similarly, the time
when the satellite disappears from the horizon (set),
over a timescale of months in some cases. Meanwhile,
long term and highly accurate orbit estimation, espe-
cially rise-and-set time computation, also plays a key
part in the pre-request information for mission analysis
and on-board resources management in more general
communication, Earth observation and scienti�c space-
craft.

One conventional way to solve this problem is to
let the satellite run through its ephemeris, and check-
ing at each instant to see whether it just becomes vis-
ible/invisible to a speci�c ground location. An orbital
propagation is advanced in time by some small time
increment, �t, and a possibility check is performed at
each step, this kind of scheme is called trajectory check-
ing. This method, however, is fairly computational ex-
pensive and therefore not suitable in the circumstances
where powerful processing resources are absent. Esco-
bal [1] proposed a faster method to solve this problem
by developing a closed-form solution for the visibility
periods. He introduced a single transcendental equa-
tion as a function of the eccentric anomaly of the satel-
lite orbit which he called the controlling equation. Nu-
merical methods were then used to �nd the rise and
set times. The advantage of this equation is that it is
solved only once per orbital period, in contrast with
the hundreds of times the Keplerian equation must be
solved with the standard step-by-step technique of hill
climbing. The controlling equation, however, is only
valid for two-body motion.

Besides the controlling equation method, Lawton [7]
has developed another method to solve for satellite-
satellite and satellite-ground station visibility periods
for vehicles in circular or near circular orbits by ap-
proximating the visibility function  (t) , by a Fourier
series. More recently, Alfano [8] further developed the
 (t) function to suit all orbital types. A signi�cant
di�culty, however, of predicting LEO satellite passes
over long period is to take account of the e�ects of at-
mospheric drag.

In this paper, a fast algorithm for the rise-and-
set time prediction for LEO satellite is proposed. It
provides high accuracy over a long period. By some
further extension, this algorithm also has the poten-
tial to provide maximum elevation angle time predic-
tion (or nadir tracking problem solving), which is very
useful for imaging planning using small satellites. The
new method exploits sophisticated analytic models of
the orbit and therefore provides direct computation of
rise-set times and nadir tracking. This makes it very
suitable for low-end processors in hand-held sets and

computers on-board spacecraft. Furthermore, in addi-
tion to taking account of secular perturbation and peri-
odic perturbations, this algorithm includes a straight
forward atmospheric drag model derived from the well
acknowledged NASA atmosphere statistics in order to
overcome the di�culties involving long-term prediction
without incurring complex computational overhead. Dif-
ferent from those in other orbit prediction methods, for
example, the most widely used SGP4, the drag model
here has variable parameter which is subject to modify
as time being on according to periodical atmosphere
properties changing. Simulation result shows this drag
model works satisfactorily in prediction over long times-
cale.

The paper will be organised as follows: in section 2,
we describe the �rst phase of the new method, which
is called \Coarse Search", it works in two-body, secular
perturbations arising from the Earth's oblateness and
atmospheric drag perturbations. In section 3, we intro-
duce the second phase of the method, which is called
\Re�nement" which improves the accuracy of the new
method. A method to update the atmospheric drag
parameter consistently for long-term prediction is ad-
dressed in section 4. Simulation results are presented
in section 5, as well as the comparison of CPU pro-
cessing time between the conventional method and this
new method. Finally, in section 6, we set out our con-
clusions.

2 Coarse Search

2.1 Fundamental Algorithm - Two-Body

Analysis

Figure 1: Satellite orbiting around the Earth showing crossings

of the Target Latitude Line (TLL).

We can easily estimate the satellite closest approach
time by checking the satellite ascending and descend-
ing passage once respectively per day. Set T (= 2�=n)
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to be the orbital period of the satellite and t0 the time
when the satellite �rst crosses over a given latitude line
on the ascending pass (see �gure(1)). We call the circle
of constant latitude that runs through the target loc-
ation the Target Latitude Line (TLL). The key point
of our approach is to use the fact that for two-body
motion, a satellite will revisit exactly the same point in
an inertial co-ordinate system after each orbital period
T (see �gure(1) ). This means that the satellite will
make another ascending-pass over the TLL at time
(t0+T ). To simplify the discussion we shall ignore the
descending passages over the TLL and include them
again only at the end. Note, in this method, satellite
position is expressed by the redundant epicycle coordin-
ates: (r; �; I; 
) [2][3].

If the location of a target on the Earth is (�T ; �T ),
where �T and �T are the geodetic longitude and lat-
itude respectively, then the satellite will pass over the
TLL every t0 + NT (or t0 + N2�=n), where N is an
integer representing the number of satellite passages, n
is satellite's orbital mean motion.

At time t0 the satellite is over the TLL and the
initial longitude di�erence between the satellite foot-
print �S and target �T is �� = �S � �T . After each
orbital period the satellite revisits the TLL and the
Earth rotates under it bringing the target closer to the
satellite's longitudinal position. The satellite will see
the target approaching by an amount !�T or !�2�=n,
where !� is the Earth's rotation rate. The Target-

Closest-Satellite-Passage (TCSP) occurs when the lon-
gitude di�erence d� is smaller than !�2�=n. Therefore
we obtain the following fundamental equation:

�� = N!�2�=n+ d� (1)

where d� is the longitudinal di�erence between the sub-
satellite point and the target at TCSP.

So:

N =

�
��

2�

n

!�

�
(2)

where square brackets implies the integer part.

In other words, the closest approach to the target
will occur when 0 � d� < !�2�=n. Therefore as long
as we know the initial passage time t0 of the TLL and
the satellite's orbital period T, we can derive the pos-
sible closest approach time over long intervals of time.
We name the procedure of TCSP estimation as coarse
search.

To determine the rise-and-set times of the satellite
over a given ground station, we need to set an angle
margin, �v (described in section 2.1.2). See �gure(2),
when satellite is visible, its longitude �S must satisfy
the following condition:

Figure 2: This �gure shows the basic idea of our new method

for satellite rise-and-set times. When satellite longitude is within

�T � �� and �T + �� , the passes are visible.

�T � �v � �S � �T + �v (3)

In order to test whether the passes are visible, we
start from �S ' �T � �v, if this is a visible pass we add
it to our coarse search list. When �S < �T � �� we add
2� to �S . When �S > �T + �� we can compute the
di�erence in longitude ��v = �S � (�T + �v) that will
bring it to within the visibility of the ground station.
Therefore we get the following formula for satellite vis-
ible estimation:

N =

�
��v
2�

n

!�

�
+ 1 (4)

2.1.1 Finding Initialisation Argument of Lat-

itude �0
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Figure 3: Geometry of �0 in ECI coordinate. i is the orbit

inclination and 'c is the target latitude.
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In the previous section, we pointed out that we need
to know the initial passage time t0 of the TLL. In our
approach, we only need to calculate the corresponding
initial �S0. Therefore we need �0 (the initial argument
of latitude) for TLL. This is found from the spherical
triangle shown in �gure(3).

sin�0 =
sin'C
sinI

(5)

2.1.2 The Longitudinal O�set Angle Margin

T S

R

O

θ

h

R
υ

Figure 4: This �gure shows within longitude angle �v satellite

is visible to the ground target.

The rise time of a satellite should occur when the satel-
lite, at a given orbital height, crosses the horizon plane.
In this case we set up another angle margin �v as shown
in �gure(4) and simpli�ed the calculation for it.

If the orbital radius of the satellite S is a(= R+ h)
then:

cos�v =
R

a
(6)

We therefore wish to estimate the times when the
satellite reaches the target longitude within��v. However,
because this a simpli�ed calculation for satellite longit-
udal angle margin, to avoid missing some low passes we
reduce R by a �xed fraction.

2.2 Adding Secular Perturbations

A satellite under the inuence of an inverse square grav-
itational law has truly constant orbital elements. In
reality, however, there is a gradual change in the orbital
elements due to the Earth's oblateness. The principal
e�ect of this is to introduce a short period oscillation
of the orbital elements, which we can ignore in most
cases. The argument of perigee, !, and longitude of
the ascending node, 
, however, experience a secular

drift which signi�cantly changes the long term predic-
tion of maximum elevation angle. We can adopt the
method we have outlined in section 2.1 to take proper
account of all these secular variations. In the following
description we will introduce the formulae for satellite
rise-and-set times.

Firstly we can easily add secular perturbations to
the coarse search procedure for the e�ect on argument
of latitude � which changes the nodal period of satellite
comes back to the same TLL:

� = �(1 + �) (7)

where � is the coe�cient of secular drifts in the epicycle
equations [2] and � = nt. So there is a change in � for
each TLL crossing of �� = 2�=(1 + �).

The second e�ect is the precession of the orbital
plane ( _
). This moves the target away from the orbital
plane ( _
 > 0). We can incorporate this e�ect into the
rotation rate of the Earth.

!eff = !� � _
 (8)

In the epicycle description of the orbit[2], the vari-
ation in 
 is expressed as:


 = 
0 + �� (9)

where � is the secular coe�cient of plane precession[2][3].
Hence _
 = �n

We can incorporate these results into equations (1)
and (2) for the coarse search to get:

�� = (!� � �n)N
��

n
(10)

Therefore:

N =

�
��

2�

n(1 + �)

(!� � �n)

�
+ 1 (11)

2.3 Accounting for Drag

Gravity is not the only force acting on the satellite.
The most important other e�ect comes from the Earth's
atmosphere, which still has a signi�cant e�ect on orbits
up to altitudes as high as 1000km. Because most of
our small satellites orbit at altitudes lower than this,
we need to consider the e�ects of atmospheric drag.
Drag is very di�cult to model because of the many
factors a�ecting the Earth's upper atmosphere and the
satellite's attitude which a�ects the cross sectional area.
In this paper, we only consider the e�ect of drag on the
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satellite's argument of lattitude for the coarse search

and include the e�ect on r in the re�nement. In order
to test our result, the SGP4 model[10] has been used
for drag modelling.

The e�ect of drag on the argument of latitude can
be incorporated into the epicycle equations as:

� = �(1 + �) + 1:5B�2 (12)

where B is the drag coe�cient.

We start by �nding the change in the epicycle phase
� over one nodal period. By setting � to be 2� we �nd
the solution for �(=��) from equation (12):

�� =
4�

1 + �
� 1

1 +
p
1 + 12�B

(13)

Using this in equation (10) we obtain:

N =

�
��

��

�
n

!� � �n

��
+ 1 (14)

This completes our discussion of the coarse search

where we have included the secular perturbations and
atmospheric drag.

3 Re�nement

Having estimated the approach time to the target at
TLL, we now need a procedure that will re�ne this
estimate to an application set tolerance. For this we
extend Escobal's [1] approach to determine the rise-
and-set time, by introducing a new controlling equation

based on the epicycle equations.

��
��
��

��
��
��
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Figure 5: This �gure describes the geometry of ground target

(T ) and satellite (S) in ECEF coordinate.

In �gure(5), we show the geometry of a satellite
pass. The target ground station, T , is located on the
surface of an oblate Earth, and the vector ~zT is the
local normal to the ground target surface. The po-
sition of the satellite is S. We have the position of
both the target and the satellite in Earth centred, Earth
�xed (ECEF) coordinates [5] expressed in r, I , 
, �,
� from the epicycle equations, from which we compute
the slant vector ~P :

~P = ~XS � ~XT (15)

This gives the position of the satellite as seen from
the target. The elevation angle is the angle measured
from the horizon up to the satellite. If this angle is h,
then:

~P � ~ZT = P sinh (16)

Therefore, we name a new controlling equation:

F (�) = sinh =
~P � ~ZT
P

(17)

F is a function of � only through ~Xs; while ~ZT
and ~XT are constant vectors in the ECEF coordinate
system. ~Xs varies with � both because the satellite
moves along its orbits and through the Earth's rotation
in the transformation from ECI to ECEF coordinates.
It is obvious that the zero points of the elevation angle
h represents the zero of function F (�) . Therefore, to
�nd the rise-and-set time we just need to �nd �0 such
that F (�) = 0.

3.1 Computation of Satellite location ~XS

The epicycle equations which express (r, I , 
, �) as
functions of time can be written as:

r = a(1 + �)�A cos(� � �p) + a� sin� (18)

+ a�r cos 2� � 2B�

I = I0 +�I (1� cos 2�) (19)


 = 
0 + ��+�� sin 2� (20)

� = � +
2A

2
[sin(�� �p) + sin�p] (21)

� 2�(1� cos�) + �� sin 2� +
3

2
B�2

where we have included the e�ects of atmospheric
drag [paper in preparation], and

� = (1 + �)� (22)
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�, � and � are the coe�cients for secular perturbation;
� is long periodic perturbation coe�cients; � repres-
ents the short periodic terms; B is the epicycle drag
coe�cient.

We de�ne the satellite position (�, �) on the orbital
plane using Cartesian co-ordinates with the � axis along
the ascending node of the orbit. Hence:

� = r cos�

� = r sin�

~XS can be expressed in ECEF coordinates as ~XS =
(XE ; YE ; ZE), where:8<
:

XE = � cos(� �
) + � cos I sin(� �
)
YE = �� sin(� �
) + � cos I cos(� �
)

ZE = � sin I
(23)

and � is the local ephemeris time (the angle between
the �rst point of Aries  and the XE axis in the ECEF
frame). These equations together describe the depend-
ence of F on �.

4 Drag Variability Modelling

The predictions for satellite passes over long timescales
are sensitive to the e�ects of atmospheric drag. Al-
though we have taken account of the drag modelling
the variability of the drag causes signi�cant timing er-
rors for satellite passes over long look ahead times. In
order to reduce the variability of atmospheric drag we
have averaged the historic drag data over time windows
to smooth it. The smoothed drag data then represents
real variability in the drag e�ect on the satellites, and
we have assumed that this historic record is a reason-
ably accurate model for future variability. The drag
model we have employed so far uses a constant drag
coe�cient. This drag coe�cient represents the average
drag rate over the look ahead time. In reality, however,
the drag rate has some probability density distribution
and this is represented by the tabulated drag rates from
smoothing the drag data in time windows. As long as
the look ahead time is much longer than the window
size over which we have averaged, the distribution of
drag rate for the prediction should accurately reect
the true drag distribution. Figure (6) and (7) show the
probability density distribution for both the historic
drag data and the smoothed data. We can see that for
the one year look ahead time, the probability distribu-
tion of smoothed drag data is very similar as the real
data. This con�rms that for a single pass prediction
over the look ahead time, smoothed drag data we will
use has a similar distribution as the real drag data.

Figure 6: This �gure shows the probability density distribu-

tion of real drag data for NOAA-10 satellite from 1/94 to 12/97

exclusive solar maximum.

Figure 7: This �gure shows the probability density distribution

of one-month smoothed drag data for NOAA-10 satellite over a

look ahead time of 1 year.

We now show how the epicycle model can cope with
a distribution of drag rates. Let the length of the
time window over which we average be dT and sup-
pose that the historic data record starts at a time t0
(see �gure(8)). At some later epoch tN we read the
NORAD 2-line element. We can de�ne a dimensionless
time from the start epoch t0: � = n(t � t0). When
t = tN , � = �N . If we de�ne d� = ndT then we can
determine which element of the table B[k] is appro-

priate for a given epoch t from: k =

�
�

d�

�
. We also

de�ne a dimensionless time from the Norad epoch tN
as: � = n(t� tN ). This is the time we have used in the
epicycle equations described in the previous section.

We start by considering the drag as the average drag
rate over the look ahead time. Let us denote this by
�B. We replace the symbol � by � for this constant
drag rate model. Replacing this into equation (21) and
ignoring periodic terms gives:
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Figure 8: This �gure shows the time blocks for long term pre-

diction.

� = (1 + �)� +
3

2
�B�2 (24)

where �=0 when � = �0 = 0. To relate � and � we
wish � to be �xed -ie satellite position should be kept
consistent:

(1 + �)� +
3

2
�B�2 = (25)

(1 + �)�+ 3�

Z �

�0

B(�0)d�0 � 3

Z �

�0

B(�0)�0d�0

So if B is constant, then � = �. To check for � we
replace the integral by a sum, with intervals dT or d�.

Let I = 3�
R �
�0
B(�0)d�0�3 R �

�0
B(�0)�0d�0. If �0 <

� < �1, then B(�
0) = B[k], where �0 = 0:

I =
3

2
B[k]�2

If �m < � < �m+1, then we have:

I = 3�[

m�1X
r=0

B[k + r](�r+1 � �r) (26)

+ B[k +m](�� �m)]

� 3

2
[
m�1X
r=0

B[k + r](�2r+1 � �2r)

+ B[k +m](�2 � �2m)]

The range of � can be determined as follows:

Given an input value of � we compute � = �+ �N ,
then compute:

n =

�
�+ �N
d�

�
; n � k

If n = k:

I =
3

2
B[n]�2

If n > k:

I = 3�[
n�1X
r=k

B[r](�r�k+1 � �r�k)

+ B[n](�� �n�k)]

� 3

2
[
n�1X
r=k

B[r](�2r�k+1 � �2r�k)

+ B[n](�2 � �2n�k)]

We can write equation (26) as:

(1 + �)� +
3

2
�B�2 =

3

2
B[n]�2 + Yn�+Xn (27)

Let:

Xn =
3

2
B[n]�2n�k

� 3

2

n�1X
r=k

B[r](�2r�k+1 � �2r�k)

Yn = 1 + �� 3B[n]�n�k

+ 3

n�1X
r=k

B[r](�r�k+1 � �r�k)

Then we will have

Xn+1 �Xn =
3

2
�n�k+1(B[n+ 1]�B[n]) (28)

Yn+1 � Yn = �3�n�k+1(B[n+ 1]�B[n]) (29)

So we keep track of the current value of n and when
n > n0, we increment X and Y using the above relation.

�n�k = �0 + (n� k)d�

�n+1 = �n + d�

From equation (27), we can compute � from �. Be-
cause:

(1 + �)� +
3

2
�B�2 =

3

2
B�2 + Y �+X

Therefore:

� = (30)

2X � 2(1 + �)� � 3B�2p
Y 2 + 3B(2X � 2(1 + �)� � 3B�2) + Y

5 Test and Result

5.1 Results for Two-body and Secular

Perturbation Expansion

For many practical problems, the approximation of two-
body motion is su�cient, especially if two closely neigh-
bouring points on a trajectory are under investigation.
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Figure 9: The black curve shows the timing error of the two-

body prediction when compared with the SGP4 model, while the

grey curve shows the error when J2 is incorporated.

However, in our case for the long term prediction of
satellite passes for communication, we could not ig-
nore the cumulative e�ect of the gradual variation of
elements from their two-body values. In �gure(9) we
show the prediction of our method compared with the
SGP4 model [10], the black curve clearly indicates that
only after a few hours the timing error of our pre-
diction based on two-body theory is already up to 8
seconds, and within one day the timing error is around
one minute!

To reduce the timing errors, we have included the
secular e�ects into our coarse search. Unlike Escobal's
original controlling equation our function F (�) not only
includes secular drift but also has short-and-long peri-
odic perturbations taken into account. We present in
table(1) a comparison of the epicycle prediction with
an accurate propagator [15] to look at the timing errors
from the prediction when atmospheric drag is ignored.
This table shows that the timing errors are as small as
0.15 seconds for a look-ahead time of almost 300 days.

Look-ahead Time [day] Timing Error [sec]
0.96 8.7e-3
4.53 2.2e-2
9.26 3.8e-2
� � � � � �

298.99 1.5e-1

Table 1: Table of timing errors as a function of look-ahead time,

comparing the predictions with an accurate orbit propagator.

In �gure(10) we show a comparison of our predic-
tion with SGP4, using an exhaustive search approach
we see that the timing di�erence between our method
and SGP4 is less than one second for two months look-
ahead time. As pointed out in [16], when atmospheric

drag can be ignored the di�erence between our predic-
tion and SGP4 arises from the fact that the accuracy
of SGP4 is only 10�6 and there is a small drift of �
between the epicycle equations and SGP4 which builds
up to a signi�cant error. This demonstrates that over a
look-ahead time of a few days, when drag e�ects can be
ignored, we have achieved one-second timing accuracy.

Figure 10: This �gure shows timing errors when short and long

variations are included, when comparing with SGP4.

5.2 Results for Including Atmospheric

Drag

We next consider the drag compensation that we in-
troduced in section 2 and 3. In �gure(11), we show
the timing errors compared with SGP4, now with drag
included in the model. Both predictions are based on
the same set of initial conditions taken for the same
NORAD �le and the prediction extend over 100 days.
With a look-ahead time of 100 days, the timing error
has now been reduced to about 2 seconds, while without
drag compensation, for the same accuracy level, the
look-ahead time is only one week. So for communica-
tion applications, we can predict rise-and-set times for
up to one month with su�cient accuracy.

To remove the drift errors in SGP4 we performed
one another experiment where we compared the pre-
dictions of our algorithm with itself, using two di�erent
NORAD �les. The separation in time between the two
NORAD �les was anything up to 40 days, and the tim-
ing errors for the SAME pass are shown in �gure(12).
One of these predictions was based upon a NORAD
data set from just before the pass. The dates used for
this experiment were from May to July of 1997. The
variability in prediction time is due to the variability
of atmospheric drag.
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Figure 11: This �gure shows timing errors when atmospheric

drag is included, when comparing with SGP4.

Figure 12: This �gure shows the prediction errors of a single

pass using our method, for look-ahead times of up to 40 days

using NORAD data at di�erent epochs.

5.3 Test and Result for Drag Variability

Modelling

Although this method is targeted for small satellite ap-
plication, we mainly use NOAA satellites data to test
the performance for long term prediction. This is be-
cause: 1) this satellite family has very typical 800-
900km Sun Synchronous Orbit, which is common for
small satellites. 2) NOAA satellites have fairly com-
plete back data log over long period which is suitable
for this test. In particular, we performed the major
tests on NOAA-10 as this satellite has remained in or-
bit for longer than 11 years and therefore the historic
record of NORAD data covers a complete solar cycle.
This enables us to test the performance of the method
at di�erent phases of the solar cycle.

The experiments performed consisted of �xing a

particular pass on a particular day and trying to predict
the time of this pass using di�erent NORAD 2 line ele-
ments from the historical archive ranging from 1 day
before hand to 550 days before hand. The results of
each of these experiments are presented in the form of
two graphs, �gure (13), (14), (15). The �rst one shows
a histogram of the timing errors. The second one dis-
plays the timing error for each prediction as a function
of look ahead time. All the timing errors are expressed
in minutes and the look ahead times are in days.

A large number of experiments were performed, but
here we only present a selection of the results while
other results show consistent trend as these presented
ones:

Figure 13: Histogram of timing errors and timing errors as a

function of look ahead time for a pass in September 1994.

September 1994 This experiment was chosen be-
cause the 18 months prior to September 1994 all lie
in the period of solar minimum. In this case the drag
rate on the satellites remains fairly stable and so good
estimates of the pass times are expected. The results
in �gures (13) show that prediction times for this pass
are accurate to within 4 minutes over the 18 month
interval.

March 1995 This experiment also covers the period
of solar minimum, and so represents a fairly stable drag
regime. During this period, however, the NORAD ele-
ments showed some drag variation which has caused
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Figure 14: Histogram of timing errors and timing errors as a

function of look ahead time for a pass in March 1995.

the prediction times, for long term predictions, to in-
crease to 8 minutes in 18 months. The results are still
accurate to within 2 minutes for over 1 year look ahead
time. The histogram shown in �gure (14) shows a very
strong peak at small times.

July 1997 Another example of a prediction during
solar minimum was the July 1997 pass. In �gure (15)
we show once again similar results to the previous ex-
periment. These results were the best case found and
show timing errors less than 1 minute over 18 months.
The plot as a function of look ahead time shows a series
of sudden jumps. This is an artifact of the simple me-
dian �ltering that has been done on the historic drag
data.

We then continued this experiment to show the pre-
diction errors for look ahead times of up to 3 years. The
results of this extended experiment are presented in �g-
ure (16) as a function of look ahead time. We see from
this experiment that predictions of order 4 minutes
can be maintained over this time period. These ex-
periments provide a fair representation of performance
during solar minimum.

June 1993 After couple of experiments concerning
solar minimum period, the next experiment extends
back into the previous solar maximum. Therefore, for

Figure 15: Histogram of timing errors and timing errors as a

function of look ahead time for a pass in July 1997.

long look ahead time, fairly rapid changes in the drag
rate were experienced by the satellite. We can see the
e�ect of this on the prediction data in upper graph
of �gure (17), in which drag parameter is a constant.
The graph shows that the timing error increases rap-
idly after 80 days. It means from the begining we have
over estimated the drag parameter because the previ-
ous period was in solar maximum. However, after we
modelled drag using the method introduced in section
4, the lower graph of �gure (17) clearly shows the tim-
ing accuracy has been greatly improved. By adjusting
the drag parameter according to the smoothed drag
statistic data, we avoided over-estimating drag para-
meter too much - the prediction timing error is reduced
to less than 4 minutes after 300 days even when solar
maximum period is included. Therefore above exper-
iment con�rms that this drag modelling method has
substaintially decreased the e�ect of the variability of
atmospheric drag.

Above experiments show that the long term pre-
diction of satellite passes over a given ground target
can be made to high accuracy even for long look ahead
times up to 18 months or more. This kind of perform-
ance, indeed, is satisfactory to low-cost communication
applications as addressed in the introduction.
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Figure 16: The timing errors as a function of look ahead time

for a 3 year prediction.

5.4 Result for Computation Time

The algorithm is several order of magnitude faster to
run than the exhaustive search using SGP4 we have
employed. In table(2) we present some timings for the
estimation on a Pentium II. These timings are su�-
ciently short for this algorithm to be used on hand
held receivers and are su�ciently accurate to control
imaging devices on satellites.

Current Programme Proposed Method
SGP4 two-body Secular
786sec 2.86sec 3.71sec

Table 2: Processing time on a Pentium II, averaged over 10,000

experiments.

6 Conclusions

In this paper, we have introduced a new method to
predict the passes of satellite to a speci�c target on the
ground which is useful for solving the satellite visibil-
ity problem. We have �rstly described a coarse search

phase of this method including two-body motion, secu-
lar perturbation and atmospheric drag. We have then
described the second phase { re�nement, which uses a
further developed controlling equation F (�) = 0 based
on the epicycle equations. We have shown that ignor-
ing drag e�ects, we can achieve timing accuracies of
1 second for look-ahead times of 60days. When drag
compensation is included, we provide su�ciently accur-
ate timing estimates, on the order of a few seconds, for
over one month ahead. For most low-cost communic-
ation applications using small satellites, the tolerable
error is only required on the order of a few minutes,
which lead this method valid to predict satellite passes

Figure 17: Timing errors for a single pass in June 1993: The

upper graph shows the result when drag parameter B is a con-

stant; The lower graph shows by using drag modelling, the timing

error has been signi�cantly reduced.

in one year period.

We have shown elsewhere [16] how to translate NORAD
elements, which are freely available for all traded satel-
lites over the Internet, to epicycle elements. Hence this
method can be used by any system that has access to
these NORAD �les.
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